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Syntheses of TI- and q2-Phospha-alkene-Transition Metal Complexes and 
the First Examples of Complexes containing only ligated Phospha-alkenes 
and Phospha-alkynes 
Saud 1. Al-Resayes, Stanlei 1. Klein, Harold W. Kroto, Mohamed F. Meidine, and John F. Nixon+ 
School of Chemistry and Molecular Sciences, University of Sussex, Brighton B N I  9QJ, U.K. 

Differing modes of co-ordination are reported for complexes of platinum(0) containing the phospha-alkene 
P(mesityl)=CPh,, e.g. in Pt(triphos){P(mesityI)=CPh,}, [triphos = (PPh,CH,) 3CMe], the phospha-alkene is 
T2-bonded to the metal whereas in Pt(P(mesityl)=CPh,}, and Pt(P(mesityl)=CPh,},(P=CBut) it is 
7' -co-ordinated and the last two complexes are the first isolated compounds containing only phospha-alkene or 
phospha -a1 kyne ligands. 

The chemistry of the novel phospha-alkenes RP=CR',, and 
phospha-alkynes, R G P ,  containing 2pn-3p, bonds is of 
current interest.lS2 Recent MO  calculation^,^^^ suggest that 
the highest occupied molecular orbital in CH2=PH is of the T- 
type with the phosphorus lone pair o-orbital only slightly more 
stable while the T* LUMO is relatively low lying. He I 
photoelectron spectroscopic studies on a variety of R G P  
m01ecules~~~ indicate that the HOMO is also of the T-type and 
the 7~-o separation is much greater than that found in the 
analogous RC=N systems. 

In principle therefore it might be expected that phospha- 
alkenes are likely to act as both +phosphorus donors and 
q2-P=C 7-donors towards transition metals whereas phospha- 
alkynes are likely to behave as q2-donors. Previously we and 
others established the +bonding type for the phospha-alkene 
P(mesityl)=CPh, in single crystal X-ray studies on cis-PtC1,- 
(PEt,){P(rne~ityl)=CPh,),~ Cr(CO), {P(mesityl)=CPh, },6 and 
Pt(PPh,), {P(mesityl)=CPh, }.O The latter complex showed a 
solution n.m.r. spectrum which also supported the possible 
existence of an T2-isomer. 

We now describe the synthesis of an q2-phospha-alkene com- 
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Scheme 1. i, P(mesityl)=CPh,; ii, P=CBut; R = mesityl. 

plex Pt(triphos){P(mesityl)=CPh,} (l), [triphos = (PPh2CH2),- 
CMe J formed unexpectedly in the displacement reaction of 
PPh, from Pt(PPh,)(triphos) (see Scheme 1). The T2-phospha- 
alkyne complex Pt(triphos)(P=CBut) (2) was formed in a 
similar way. 

Both (1) and (2) show the characteristic 31P{1H} n.m.r. 
spectrum expected for an [ABM] spin system (A and B 
represent ,lP nuclei of the co-ordinated triphos, M the unique 
co-ordinated phosphorus of theT2-phospha-alkene or phospha- 
alkyne) each line exhibiting the expected satellites due to 
coupling from the lg5Pt nucleus. In addition a singlet is ob- 
served for the non-co-ordinated phosphorus of the triphos 
ligand. 7 

The 31P {'H } n.m.r. spectrum of (1) is more complex than 
that of (2) which is shown in Figure 1 because of the existence 
of two isomers of (1) which arise from the different orienta- 
tions of the phosphorus lone pair of the phospha-alkene. The 
lg5Pt n.m.r. spectrum of (1) (Figure 2) confirms the presence 
of the isomeric mixture and consists of two sets of eight lines 
of equal intensity. 

The q2-mode of co-ordination of both (1) and (2) is un- 
ambiguously established by the unusually small values of 
1J(Pt,P) for the co-ordinated phospha-alkene and phospha- 
alkyne (467, 455; and 144 Hz, respectively). The very low 
values reflect the large s-character of the phosphorus lone pair 
of the phospha-alkene and phospha-alkyne which is directed 
away from the metal atom in (1) and (2) and a similar effect 
was noted by uslo in the T~-P~(PP~,)(P=CBU~) complex. 

In contrast to the above, treatment of Pt(cod), (cod = 1,5- 
cyclo-octadiene), with P(mesityl)=CPh, gave the -complex 
Pt {P(mesityl)=CPh, }, (3), (Scheme 2) as evidence by 31P and 
lasPt n.m.r. spectroscopy, the latter showing a widely spaced 
1-3-3-1 quartet [lJ(Pt,P) 4946 Hz1.7 Likewise when a 2 : 1 mix- 
ture of P(mesityl)=CPh, and P=CBut reacted with Pt(cod), the 
product was Pt {P(mesityl)=CPh, >,(P=CBut) (4) which is an 
interesting example of a complex containing only ligated 

t N.m.r. data for (1): 31P, 6 -137.6 (PA), -139.6 (PB), -184.1 
(Px), - 168.1 p.p.m. (Pc) ; a J ( P ~ , ~ )  20, 2 J ( P ~ , P ~ )  12, 2 J ( P ~ , P ~ )  
57 Hz; lg5Pt, 6 460.0 p.p.m. [isomer (a)]; 'J(Pt,PA) 3141, 
'J(Pt,PB) 3014, 'J(Pt,Px) 467 Hz; 6 -440.7 p.p.m. [isomer (b)]; 
'J(Pt,PA) 3103, 'J(Pt,PB) 2986, 'J(Pt,Px) 455 HZ. For (2): "p, 8 
-134.8 (PA), -136.6 (PB), -58.7 (Px), -168.7 p.p.m. (Pc); 'J- 

2 J ( P ~ , P ~ )  = 2J(P~,Px) = 22 Hz. For (3): 31P {lH } (250 K), 6 85.6 
p.p.m. [s with Pt satellites, lJ(Pt,P) 4951 Hz]; lQ5Pt ('H } (263 K) 6 
521.8, 457.5, 393.2, and 329.1 p.p.m. [1:3:3:1 q, 'J(Pt,P) 4954 
Hz]. For (4): 31P, 6 62.1 (PA), 61.1 (PB), -101.9 (Px); 'J(Pt,Pa) 

12, 2J(P~,Px) 11  Hz. (31P Shifts are relative to trimethyl phosphite, 
lg5Pt shifts relative to the standard in ref. 12.) 

(pt,pA) 3381, 'J(Pt,PB) 2986, 'J(Pt,Px) 144 HZ; 'J(PA,PB) = 

4048, 'J(Pt,PB) 3438, 'J(Pt,Px) 11 5 HZ; 'J(PA,?) = 2J(PA,p~)e = 
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Figure 1. 31P {lH } N.m.r. spectrum for compound (2). 

I 
Figure 2. lg5Pt N.m.r. spectrum for compound (1); * and 1 indicate isomers (b) and (a) respectively. 
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Scheme 2. i, P(mesityl)=CPh,; ii, P(mesityl)=CPh,: P=CBut 2 : 1 ; 
R = mesityl. 

phospha-alkenes ($-) and a phospha-alkyne (q2-) (see Figure 
3.)t Clearly a delicate balance of factors can result in either 
ql- or q2-co-ordination of the phospha-alkene. 

Finally it is interesting to compare the variation in the 
magnitude of lJ(Pt,P) for the q2-co-ordinated P=CBut in 
Pt(PPh,),(P-CBut) (62 Hz),lo with (4) (115 Hz) and (2) (144 
Hz), since these changes must reflect mainly s-character and 
electron density differences of the platinum.ll 

The increased s-character of the formally sp2-hybridised 
phosphorus in P(mesityl)=CPh, and the very small bite 
(P-Pt-P bond angles typically = ca. 940)12 of the triphos 
ligand which diverts more s-character to the platinum hybrid 
orbital are probably responsible for the larger lJ(Pt,P) values 
found in (2) and (4). 
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Figure 3. 31P {'H } N.m.r. spectrum for compound (4). 
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