Syntheses of η^1 - and η^2 -Phospha-alkene–Transition Metal Complexes and the First Examples of Complexes containing only ligated Phospha-alkenes and Phospha-alkynes

Saud I. Al-Resayes, Stanlei I. Klein, Harold W. Kroto, Mohamed F. Meidine, and John F. Nixon* School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

Differing modes of co-ordination are reported for complexes of platinum(0) containing the phospha-alkene $P(mesityl)=CPh_2$, e.g. in $Pt(triphos)\{P(mesityl)=CPh_2\}$, $[triphos=(PPh_2CH_2)_3CMe]$, the phospha-alkene is η^2 -bonded to the metal whereas in $Pt\{P(mesityl)=CPh_2\}_3$ and $Pt\{P(mesityl)=CPh_2\}_2(P\equiv CBu^t)$ it is η^1 -co-ordinated and the last two complexes are the first isolated compounds containing only phospha-alkene or phospha-alkyne ligands.

The chemistry of the novel phospha-alkenes RP=CR 1_2 , and phospha-alkynes, RC=P, containing $2p_{\pi}$ - $3p_{\pi}$ bonds is of current interest. Recent MO calculations, 3,4 suggest that the highest occupied molecular orbital in CH $_2$ =PH is of the π -type with the phosphorus lone pair σ -orbital only slightly more stable while the π^* LUMO is relatively low lying. He I photoelectron spectroscopic studies on a variety of RC=P molecules 5,6 indicate that the HOMO is also of the π -type and the π - σ separation is much greater than that found in the analogous RC=N systems.

In principle therefore it might be expected that phospha-alkenes are likely to act as both η^1 -phosphorus donors and η^2 -P=C π -donors towards transition metals whereas phospha-alkynes are likely to behave as η^2 -donors. Previously we and others established the η^1 -bonding type for the phospha-alkene P(mesityl)=CPh₂ in single crystal X-ray studies on cis-PtCl₂-(PEt₃){P(mesityl)=CPh₂}, Cr(CO)₅{P(mesityl)=CPh₂}, and Pt(PPh₃)₂{P(mesityl)=CPh₂}. The latter complex showed a solution n.m.r. spectrum which also supported the possible existence of an η^2 -isomer.

We now describe the synthesis of an η^2 -phospha-alkene com-

$$\begin{array}{c} Ph_{2}C \stackrel{C}{\Longrightarrow} P_{\bullet} \stackrel{R}{\longrightarrow} P_{\bullet} \\ Ph_{2}P \stackrel{P}{\Longrightarrow} P_{\bullet} Ph_{2} \\ Ph_{2}P \stackrel{P}{\Longrightarrow} Ph_{2} \stackrel{P}{\Longrightarrow} Ph_{2} \\ CH_{2}C \stackrel{C}{\Longrightarrow} P_{\bullet} \\ CH_{2}C \stackrel{C}{\Longrightarrow} P_{\bullet} \\ Me \end{array}$$

$$\begin{array}{c} Ph_{2}P \stackrel{P}{\Longrightarrow} Ph_{2} \\ CH_{2}C \stackrel{P}{\Longrightarrow} Ph_{2}C \stackrel{P}{\Longrightarrow} Ph_{2}C$$

Scheme 1. i, $P(mesityl)=CPh_2$; ii, $P\equiv CBu^t$; R=mesityl.

plex Pt(triphos){P(mesityl)=CPh₂} (1), [triphos = (PPh₂CH₂)₃-CMe] formed unexpectedly in the displacement reaction of PPh₃ from Pt(PPh₃)(triphos) (see Scheme 1). The η^2 -phosphaalkyne complex Pt(triphos)(P=CBu^t) (2) was formed in a similar way.

Both (1) and (2) show the characteristic $^{31}P\{^{1}H\}$ n.m.r. spectrum expected for an [ABM] spin system (A and B represent ^{31}P nuclei of the co-ordinated triphos, M the unique co-ordinated phosphorus of the η^{2} -phospha-alkene or phospha-alkyne) each line exhibiting the expected satellites due to coupling from the ^{195}Pt nucleus. In addition a singlet is observed for the non-co-ordinated phosphorus of the triphos ligand.†

The ³¹P {¹H } n.m.r. spectrum of (1) is more complex than that of (2) which is shown in Figure 1 because of the existence of two isomers of (1) which arise from the different orientations of the phosphorus lone pair of the phospha-alkene. The ¹⁹⁵Pt n.m.r. spectrum of (1) (Figure 2) confirms the presence of the isomeric mixture and consists of two sets of eight lines of equal intensity.

The η^2 -mode of co-ordination of both (1) and (2) is unambiguously established by the unusually small values of ${}^1J(Pt,P)$ for the co-ordinated phospha-alkene and phospha-alkyne (467, 455; and 144 Hz, respectively). The very low values reflect the large s-character of the phosphorus lone pair of the phospha-alkene and phospha-alkyne which is directed away from the metal atom in (1) and (2) and a similar effect was noted by us¹⁰ in the η^2 -Pt(PPh₃)(P=CBu¹) complex.

In contrast to the above, treatment of $Pt(cod)_2$ (cod = 1,5-cyclo-octadiene), with $P(mesityl)=CPh_2$ gave the η^1 -complex Pt { $P(mesityl)=CPh_2$ }₃ (3), (Scheme 2) as evidence by ^{31}P and ^{198}Pt n.m.r. spectroscopy, the latter showing a widely spaced 1-3-3-1 quartet [$^{1}J(Pt,P)$ 4946 Hz].† Likewise when a 2:1 mixture of $P(mesityl)=CPh_2$ and $P=CBu^t$ reacted with $Pt(cod)_2$ the product was Pt { $P(mesityl)=CPh_2$ }₂($P=CBu^t$) (4) which is an interesting example of a complex containing only ligated

† N.m.r. data for (1): ${}^{31}P$, $\delta - 137.6$ (P_A), -139.6 (P_B), -184.1 (P_X), -168.1 p.p.m. (Pc); ${}^{2}J(P_{A},P_{B})$ 20, ${}^{2}J(P_{B},P_{C})$ 12, ${}^{2}J(P_{A},P_{C})$ 57 Hz; ${}^{195}Pt$, $\delta - 460.0$ p.p.m. [isomer (a)]; ${}^{1}J(Pt,P_{A})$ 3141, ${}^{1}J(Pt,P_{B})$ 3014, ${}^{1}J(Pt,P_{X})$ 467 Hz; $\delta - 440.7$ p.p.m. [isomer (b)]; ${}^{1}J(Pt,P_{A})$ 3103, ${}^{1}J(Pt,P_{B})$ 2986, ${}^{1}J(Pt,P_{X})$ 455 Hz. For (2): ${}^{31}P$, $\delta - 134.8$ (P_A), -136.6 (P_B), -58.7 (P_X), -168.7 p.p.m. (Pc); ${}^{1}J(Pt,P_{A})$ 3381, ${}^{1}J(Pt,P_{B})$ 2986, ${}^{1}J(Pt,P_{X})$ 144 Hz; ${}^{2}J(P_{A},P_{B})$ = ${}^{2}J(P_{A},P_{X})$ = 22 Hz. For (3): ${}^{31}P$ (${}^{1}H$) (250 K), δ 85.6 p.p.m. [s with Pt satellites, ${}^{1}J(Pt,P)$ 4951 Hz]; ${}^{198}Pt$ (${}^{1}H$) (263 K) δ 521.8, 457.5, 393.2, and 329.1 p.p.m. [1:3:3:1 q, ${}^{1}J(Pt,P)$ 4954 Hz]. For (4): ${}^{31}P$, δ 62.1 (Pa), 61.1 (P_B), -101.9 (P_X); ${}^{1}J(Pt,P_{A})$ 4048, ${}^{1}J(Pt,P_{B})$ 3438, ${}^{1}J(Pt,P_{X})$ 115 Hz; ${}^{2}J(P_{A},P_{B})$ = ${}^{2}J(P_{A},P_{X})$ = 12, ${}^{2}J(P_{B},P_{X})$ 11 Hz. (${}^{31}P$ Shifts are relative to trimethyl phosphite, ${}^{198}Pt$ shifts relative to the standard in ref. 12.)

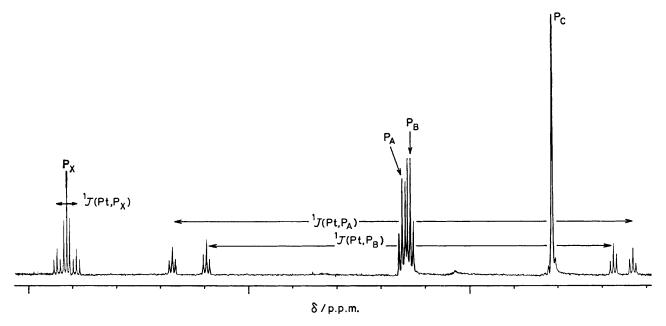


Figure 1. ³¹P {¹H } N.m.r. spectrum for compound (2).

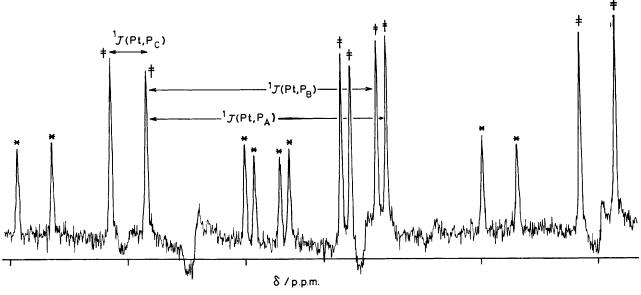
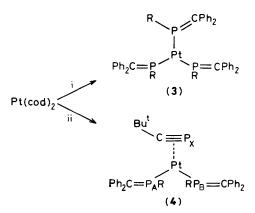



Figure 2. 195 Pt N.m.r. spectrum for compound (1); * and ‡ indicate isomers (b) and (a) respectively.

Scheme 2. i, $P(mesityl)=CPh_2$; ii, $P(mesityl)=CPh_2$: $P=CBu^t 2:1$; R=mesityl.

phospha-alkenes (η^1 -) and a phospha-alkyne (η^2 -) (see Figure 3.)† Clearly a delicate balance of factors can result in either η^1 - or η^2 -co-ordination of the phospha-alkene.

Finally it is interesting to compare the variation in the magnitude of ${}^{1}J(Pt,P)$ for the η^{2} -co-ordinated $P=CBu^{t}$ in $Pt(PPh_{3})_{2}(P=CBu^{t})$ (62 Hz), 10 with (4) (115 Hz) and (2) (144 Hz), since these changes must reflect mainly s-character and electron density differences of the platinum. 11

The increased s-character of the formally sp²-hybridised phosphorus in P(mesityl)=CPh₂ and the very small bite (P-Pt-P bond angles typically = ca. 94°)¹² of the triphos ligand which diverts more s-character to the platinum hybrid orbital are probably responsible for the larger ¹J(Pt,P) values found in (2) and (4).

We thank the S.E.R.C. for financial support (to M. M.) and the Brazilian Government CNPq and the Saudi Arabian

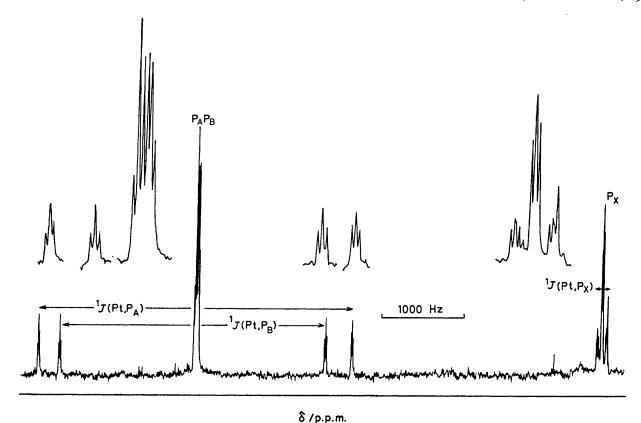


Figure 3. ³¹P {¹H } N.m.r. spectrum for compound (4).

Government for scholarships (to S. I. K. and S. I. A., respectively).

Received, 3rd May 1983; Com. 548

References

- 1 R. Appel, F. Knoll, and I. Ruppert, Angew Chem., Int. Ed.
- Engl., 1981, 20, 731, and references therein.

 2 H. W. Kroto and J. F. Nixon, ACS Symposium Series No. 171, Phosphorus Chemistry, 1981, 383.
- 3 C. Thomson, J. Chem. Soc., Chem. Commun., 1977, 322.
- 4 W. W. Schoeller and E. Niecke, J. Chem. Soc., Chem. Commun., 1982, 569.
- 5 J. C. T. R. Burckett St. Laurent, M. A. King, H. W. Kroto, J. F. Nixon, and R. J. Suffolk, J. Chem. Soc., Dalton Trans., 1983, 755.

- 6 B. Solouki, H. Bock, R. Appel, A. Westerhaus, G. Becker, and G. Uhl, Chem. Ber., 1982, 115, 3747.
- 7 H. W. Kroto, J. F. Nixon, M. J. Taylor, A. A. Frew, and K. W. Muir, Polyhedron, 1982, 1, 89.
- 8 T. C. Klebach, R. Lourenr, F. Bickelhaupt, C. H. Stam, and A. Van Herk, J. Organomet. Chem., 1982, 210, 211.
- 9 Th. A. van der Knaap, F. Bickelhaupt, H. van der Poel, G. van Koten, and C. H. Stam, J. Am. Chem. Soc., 1982, 104, 1756.
- 10 J. C. T. R. Burckett St. Laurent, P. B. Hitchcock, H. W. Kroto, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1981, 1141.
- 11 J. F. Nixon and A. Pidcock, Ann. Rep. N.M.R. Spectrosc., 1969, 2, 345.
- 12 J. Chatt, R. Mason, and D. W. Meek, J. Am. Chem. Soc., 1975, 97, 3827.